Numerical Simulation of Combustion Behavior of DI Diesel Engine with Conjunction of AMR and Embedding Refinement Strategies

K. Naima, A. Liazid and H. Bousbaa

Abstract: Currently, computational fluid dynamics has become an effective supplement to experimentation in the analysis and development of various engineering systems including internal combustion engines. In fact, multi-dimensional modelling of IC engines is less extensive and less time consuming than experimentation. In this aim, CONVERGE code was used to study the combustion behavior in a DI engine with various mesh control techniques including embedding and Adaptive Mesh Refinement (AMR). The simulation covers the compression, spray, combustion and expansion. A single spray plume and 1/6th of the combustion cylinder (60 degrees) is simulated. In light of the simulation results it is extremely recommended to use AMR approach in conjunction with embedding around the nozzle for running engine simulations.

Keywords:CFD, internal combustion engine, grid control, AMR


Abraham, J., Bracco, F., & Reitz, R. (1985). Comparisons of computed and measured premixed charge engine combustion. Combustion and Flame, 60(3), 309-322.

Amsden, D. C., & Amsden, A. A. (1993). The KIVA story: A paradigm of technology transfer. IEEE Transactions on Professional Communication, 36(4), 190-195.

Atmaca, M., Girgin, İ., & Ezgi, C. (2016). CFD modeling of a diesel evaporator used in fuel cell systems. International Journal of Hydrogen Energy, 41(14), 6004-6012. doi:10.1016/j.ijhydene.2016.02.122

Bousbaa, H., Sary, A., Tazerout, M., & Liazid, A. (2012). Investigations on a compression ignition engine using animal fats and vegetable oil as fuels. Journal of Energy Resources Technology, 134(2), 022202, 11 p. doi:10.1115/1.4005660

Ferguson, C. R., & Kirkpatrick, A. T. (2015). Internal combustion engines: Applied thermosciences. Canada: John Wiley & Sons.

Frigo, S., Seggiani, M., Puccini, M., & Vitolo, S. (2014). Liquid fuel production from waste tyre pyrolysis and its utilisation in a diesel engine. Fuel, 116, 399-408. doi:

Geng, P., Cao, E., Tan, Q., & Wei, L. (2016). Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renewable and Sustainable Energy Reviews, 71(C), 523-534.

Guo, C., Song, Y., Feng, H., Zuo, Z., Jia, B., Zhang, Z., & Roskilly, A. P. (2018). Effect of fuel injection characteristics on the performance of a free-piston diesel engine linear generator: CFD simulation and experimental results. Energy Conversion and Management, 160, 302-312. doi:10.1016/j.enconman.2018.01.052

Halstead, M., Kirsch, L., & Quinn, C. (1977). The autoignition of hydrocarbon fuels at high temperatures and pressures—fitting of a mathematical model. Combustion and Flame, 30, 45- 60.

Han, Z., & Reitz, R. D. (1995). Turbulence modeling of internal combustion engines using RNG κ-ε models. Combustion Science and Technology, 106(4-6), 267-295.

Heywood, J. B. (1988). Internal combustion engine fundamentals (vol. 930): New York: McGraw-Hill. Huang, M., Gowdagiri, S., Cesari, X. M., & Oehlschlaeger, M. A. (2016). Diesel engine CFD simulations: Influence of fuel variability on ignition delay. Fuel, 181, 170-177.

Jafari, M., Parhizkar, M. J., Amani, E., & Naderan, H. (2016). Inclusion of entropy generation minimization in multi-objective CFD optimization of diesel engines. Energy, 114, 526-541. doi:10.1016/

Jiaqiang, E., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., Peng, Q., & Zhang, Z. (2017). Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews, 80, 620-647.

Kalargaris, I., Tian, G., & Gu, S. (2017). Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Processing Technology, 157, 108-115. doi:

Kalargaris, I., Tian, G., & Gu, S. (2018). Experimental characterisation of a diesel engine running on polypropylene oils produced at different pyrolysis temperatures. Fuel, 211, 797-803. doi:10.1016/j.fuel.2017.09.101

Khatir, N., & Liazid, A. (2013). Numerical investigation on combustion behaviors of direct-injection spark ignition engine fueled with CNG-hydrogen blends. International Review of Mechanical Engineering (IREME), 7(4), 652-663.

Kong, S.-C., Han, Z., & Reitz, R. D. (1995). The development and application of a diesel ignition and combustion model for multidimensional engine simulation. SAE Technical Paper 950278, Retrieved from

Lakshminarayanan, P., & Aghav, Y. V. (2010). Modelling diesel combustion. Netherlands: Springer Science & Business Media B.V.

Li, Y., Li, H., Guo, H., Li, Y., & Yao, M. (2017). A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model. Applied Energy, 205, 153-162. doi:10.1016/j.apenergy.2017.07.071

Masoudi, N., & Zaccour, G. (2017). Adapting to climate change: Is cooperation good for the environment? Economics Letters, 153, 1-5. doi:

Maurya, R. K., & Mishra, P. (2017). Parametric investigation on combustion and emissions characteristics of a dual fuel (natural gas port injection and diesel pilot injection) engine using 0- D SRM and 3D CFD approach. Fuel, 210, 900-913. doi:10.1016/j.fuel.2017.09.021

Mendez, S., Kashdan, J. T., Bruneaux, G., Thirouard, B., & Vangraefschepe, F. (2009). Formation of unburned hydrocarbons in low temperature diesel combustion. SAE International Journal of Engines, 2(2009-01-2729), 205-225. doi:

Montgomery, D., & Reitz, R. D. (1996). Six-mode cycle evaluation of the effect of EGR and multiple injections on particulate and NOx emissions from a DI diesel engine. Paper presented at International Congress & Exposition, Detroit, MI, USA.

Ndayishimiye, P., Naima, K., Liazid, A., & Tazerout, M. (2011). Performance and emission characteristics of a DI compression ignition engine operated on PODL biofuel. International Journal of Renewable Energy Technology, 2(3), 324. doi:10.1504/ijret.2011.040867

Ong, H., Mahlia, T., & Masjuki, H. (2011). A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15(1), 639-647.

Pandal, A., García-Oliver, J. M., Novella, R., & Pastor, J. M. (2018). A computational analysis of local flow for reacting Diesel sprays by means of an Eulerian CFD model. International Journal of Multiphase Flow, 99, 257-272. doi:10.1016/j.ijmultiphaseflow.2017.10.010

Petranović, Z., Bešenić, T., Vujanović, M., & Duić, N. (2017). Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation. Journal of Environmental Management, 203, 1038-1046. doi:

Richards, K., Senecal, P., & Pomraning, E. (2008). CONVERGE (version 1.3). Computer Software. Middleton, WI: Convergent Science, Inc.

Shi, Y., Ge, H. -W., & Reitz, R. D. (2011). Computational optimization of internal combustion engines. Springer-Verlag London Limited.

Sideri, M., Berton, A., & D’Orrico, F. (2017). Assessment of the wall heat transfer in 3D-CFD in- cylinder simulations of high performance diesel engines. Energy Procedia, 126, 963-970. doi:10.1016/j.egypro.2017.08.187

Silva, A. O., Monteiro, C. A. A., Souza, V. P. D., Ferreira, A. S., Jaimes, R. P., Fontoura, D. V. R., & Nunhez, J. R. (2017). Fluid dynamics and reaction assessment of diesel oil hydrotreating reactors via CFD. Fuel Processing Technology, 166, 17-29. doi:10.1016/j.fuproc.2017.05.002

Soni, D. K., & Gupta, R. (2016). Optimization of methanol powered diesel engine: A CFD approach. Applied Thermal Engineering, 106, 390-398. doi:10.1016/j.applthermaleng.2016.06.026

Wallington, T., Lambert, C., & Ruona, W. (2013). Diesel vehicles and sustainable mobility in the US. Energy Policy, 54, 47-53.

Xin, J., Montgomery, D., Han, Z., & Reitz, R. (1997). Multidimensional modeling of combustion for a six-mode emissions test cycle on a DI diesel engine. Journal of Engineering for Gas Turbines and Power, 119(3), 683-691.