Vision-based Lane Departure Warning System

N. S. Ahmad Rudin, Y. Mohd. Mustafah, Z. Zainal Abidin, J. Cho, H. F. Mohd. Zaki, N. N. W. Nik Hashim and H. Abdul Rahman

Abstract: Vision-based Lane Departure Warning System (LDW) is a promising tool to avoid road accidents. In practice, it is exceptionally hard to accurately and efficiently detect lanes due a variety of complex noise such as environmental variability. However, image processing techniques have shown promising and reliable outcome in detecting lanes during non- ideal conditions. Lane detection and lane departure measurement are two important modules in LDW system. This paper explores the gaps and limitations of the existing method in the past 10 years concerning lane detection and departure warning for LDW system.

Keywords:LDW, lane detection, lane departure

References

Cario, G., Casavola, A., & Lupia, M. (2017). Lane Detection and Tracking Problems in Lane Departure Warning Systems. In Loce, R. P., Bala, R., & Trivedi, M., Computer Vision and Imaging in Intelligent Transportation Systems (p. 432). New York: Wiley-IEEE Press, John Wiley & Sons. https://doi.org/10.1002/9781118971666.ch11

Chanho, L., & Moon, J.-H. (2018). Robust Lane Detection and Tracking for Real Time Applications. IEEE Transactions on Intelligent Transportation Systems, 1-6.

Cualain, D. O., Hughes, C., Glavin, M., & Jones, E. (2012). Automotive Standards-grade Lane Departure Warning System. IET Intelligent Transport Systems, 6(1), 44-57.

Freeman, W. T., & Adelson, E. H. (1991). The Design and Use of Steerable Filters. IEEE Transaction on Pattern Analysis and Machine Intelligence, 13(9), 891-905.

Ge, P.-S., Guo, L., Xu, G.-K., Zhang, R.-H., & Zhang, T. (2012). A Real-Time Lane Detection Algorithm Based on Intelligent CCD Parameters Regulation. Discrete Dynamics in Nature and Society, 1-16. http://dx.doi.org/10.1155/2012/273164

Gopalan, R., Hong, T., Shneier, M., & Chellappa, R. (2012). A Learning Approach Towards Detection and Tracking of Lane Markings. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1088-1098.

Guo, J., Wei, Z., & Miao, D. (2015). Lane Detection Method Based on Improved RANSAC Algorithm. Paper presented at IEEE Twelfth International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan.

Haloi, M., & Jayagopi, D. B. (2015). Robust Lane Detection and Departure Warning System. Paper presented at IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea.

Jadhav, G. S., & Mulmule, P. V. (2016). Review on Lane Departure Detection Methods. International Journal of Advanced Research in Computer and Communication Engineering, 5(5), 916-919.

Jung, S., Youn, J., & Sull, S. (2016). Efficient Lane Detection Based on Spatiotemperal Images. IEEE Transaction on Intelligent Transportation Systems, 17(1), 289-295.

Kortli, Y., Marzougui, M., Bouallegue, B., Chandra Bose, J. S., Rodrigues, P., & Atri, M. (2017). A Novel Illumination- Invariant Lane Detection System. 2nd International Conference on IEEE Anti-Cyber CRIMES (ICACC), Abha, Saudi Arabia.

Kumar, A. M., & Simon, P. (2015). Review of Lane Detection and Tracking Algorithms in Advanced Driver Assistance System. International Journal of Computer Science and Information Technology (IJCSIT), 7(4), 65-78.

Liu, G., Worgotter, F., & Markelic, I. (2010). Combining Statistical Hough Transform and Particle FIlter for Robust Lane Detection and Tracking. Paper presented at IEEE Intelligent Vehicles Symposium (IV), San Diego, CA, USA.

McCall, J. C., & Trivedi, M. M. (2006). Video-based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation. IEEE Transaction Transportation System, 7(1), 20- 37.

Son, J., Yoo, H., Kim, S., & Sohn, K. (2015). Real-time Illumination Invariant Lane Detection for Lane Departure Warning System. Expert System with Application, 42(4), 1816-1824.

Srivastava, S., Singal, R., & Lumb, M. (2014). Efficient Lane Detection Algorithm Using Different Filtering Techniques. International Journal of Computer Application, 88, 6-11.

Sun, T.-Y., Tsai, S.-J., & Chan, V. (2006). HSI Color Model Based Lane-Marking Detection. Paper presented at IEEE Intelligent Transportation Systems Conference (ITSC ’06), Toronto, Ontario, Canada.

Tran, T.-T., Bae, C.-S., Kim, Y.-N., Cho, H.-M., & Cho, S.-B. (2010). An Adaptive Method for Lane Marking Detection Based on HSI Color Model. In Huang D. S., McGinnity, M., Heutte, L., & Zhang, X. P. (Eds). ICIC 2010: Adnvanced Intelligent Computing Theories and Applications. Communications in Computer and Information Science (CCIS), 93, 305-310. Berlin: Springer, Germany.

von Gioi, R. G., Jakubowicz, J., Morel, J.-M., & Randall, G. (2010). LSD: Line Segment Detector with a False Detection Control. IEEE Transaction on Pattern Analysis and Machine Intelligence, 32(4), 722-732.

Yi, S.-C., Chen, Y.-C., & Chang, C.-H. (2015). A Lane Detection Approach Based on Intelligent Vision. Computers and Electrical Engineering, 42, 23-29. https://doi.org/10.1016/j.compeleceng.2015.01.002

Yoo, J. H., Lee, S.-W., Park, S.-K., & Kim, D. H. (2017). A Robust Lane Detection Method based on Vanishing Point Estimation using the Relevance of Line Segment. IEEE Transactions on Intelligent Transportation System, 18(12), 3254-3266.

Zhao, H., Teng, Z., Kim, H.-H., & Kang, D.-J. (2013). Annealed Particle Filter Algorithm Used for Lane Detection and Tracking. Journal of Automation and Control Engineering, 1(1), 31-35.

Zhu, H., Yuen, K.-V., Mihaylova, L., & Leung, H. (2017). Overview of Environment Perception for Intelligent Vehicles. IEEE Transactions on Intelligent Transportation System, 18(10), 2584- 2601.