Development of an Automotive Anti-Roll Bar: A Review

M. Mohammad Taha, S. M. Sapuan, M. R. Mansor and N. Abdul Aziz

Abstract: In this study, understanding between the operation and mechanism of an automotive anti-roll bar is reviewed. Design consideration of the automotive anti-roll bar is studied from past researchers with the summarized of current invention of automotive anti- roll bar. In development of the automotive anti-roll bar, interaction between design elements such as material, function analysis, forces analysis, failure analysis and geometry specifications are essentially need to be considered in development of it without affecting its conventional function and achieve the performance target. The potential of the fibre reinforced composite such as natural fibre is likely to be the next future generation of automotive anti-roll bar. Considerations of the aforementioned design elements would help design engineers to outcome the challenges in design of composite materials. The inventions that patented by the past inventors would help as a guide.

Keywords: Anti-roll bar, fibre reinforced composite, automotive component design

References

Anderson, G. D., Khoury, J. M., Mattice, M. W., Drouillard, T. M., Rowe, K. G., Fretwell, D. I., & Lovatt, C. (2002). Method of enhancing the bending process of a stabilizer bar. US Patent 6,384,388 B1.

Ashby, M. F. (2004). Materials selection in mechanical design (3rd ed.). Elsevier Butterworth- Heinemann, Burlington, MA.

Azaman, M. D., Sapuan, S. M., Sulaiman, S., Zainudin, E. S., & Khalina, A. (2013). Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Materials and Design, 52, 1018–1026.

Barth, L., & Xavier Delayre. (2010). Coupling mechanism for anti-roll bar. US Patent 7,815,205 B2.

Bayrakceken, H., Tasgetiren, S., & Aslantas, K. (2006). Fracture of an automobile anti-roll bar. Engineering Failure Analysis, 13, 732–738.

Begenau, E., Schmidt, B., & Rapp, G. (2015). Torsion beam for an anti-roll bar of a motor vehicle. US Patent 2015/0115559 A1.

Bhandari, V. B. (2010). Design of machine elements. Tata McGraw-Hill Education, New Delhi.

Bharane, P., Tanpure, K., Patil, A., & Kerkal, G. (2014). Design, analysis and optimization of anti-roll bar. International Journal of Engineering Research and Applications, 4, 137–140.

Budynas, R., & Nisbett, K. (2009). Shigley’s mechanical engineering design, SI Version. Book. Mc- Graw Hill, New York.

Carlstedt, R. P., Chamberlin, J. B., Ledesma, R. H., Saxon, N. L., Kramer, D. A., Downey, D. R., & Cubalchini, J. (2005). Variable rate bushing for stabilizer bar. US Patent 6,85 4,750 B2.

Cerit, M., Nart, E., & Genel, K. (2010). Investigation into effect of rubber bushing on stress distribution and fatigue behaviour of anti-roll bar. Engineering Failure Analysis, 17, 1019-1027.

Chen, Y. C., Tsai, P. Y., & Lai, I. A. (2012). Kinematic analysis of roll motion for a strut/SLA suspension system. World Academy of Sciences, Engineering and Technology, 6, 1170–1174.

Colosio, M. A., Homobono, A., Andrade, P. De, Paulo, S., & Colosio, M. A. (2004). Fatigue life of normalized and quenching & fatigue life of normalized and quenching & tempered stabilizer bars. SAE Technical Paper.

Cong, J., & Zhang, B. (2011). Methodology for evaluating manufacturability of composite materials. Applied Composite Materials, 19, 189–201.

Cronjé, P. H., & Els, P. S. (2010). Improving off-road vehicle handling using an active anti-roll bar. Journal of Terramechanics, 47, 179–189.

Czaja, I., & Hijawi, M. (2004). Automotive stabilizer bar system design and reliability. SAE Technical Paper.

Daily, T. H., Pazdirek, J., & Budzyn, R. G. (2006). Stabilizer bar. US Patent 7,028,998 B2.

Doody, M. (2013). Design and development of a composite automotive anti-roll bar. Dissertation of Master of Applied Science. University of Windsor.

Fader, J. A. (2001). Stabilizer bar with bushings that remain fixed to the bar. US Patent 6,893,034 B2.

Fan, J., & Njuguna, J. (2016). An introduction to lightweight composite materials and their use in transport structures. Lightweight composite structures in transport: design, manufacturing, analysis and performance. Elsevier Ltd. Cambridge, MA.

Gummadi, L. N. B., Cai, H., Lin, S., Fan, X., & Cao, K. (2003). Bushing characteristics of stabilizer bars. SAE Technical Paper.

Gutowski, T. G. P. (Ed.) (1997). Advanced composites manufacturing. John Wiley and Sons, Inc., New York.

Hansson, O., & Fuks, L. (2010). Stabiliser bar for a vehicle. US Patent 7,828,308 B2.

Hoppe, R. (2013). Fiber structure, method for its manufacture and use as well as fiber-resin composite material. US Patent 2013/0225721 A1.

Hubert, K., & Kumar, A. (2005). Anti-roll stability suspension technology. SAE Technical Paper.

Hufnagle, E. C., Morales, J. A. P., Kline, J. T., Massos, P., & Scolaro, C. P. (2013). Stabilizer bar bushing attachment assembly. US Patent 8,505,940 B1.

Imihezri, S. S. S., Sapuan, S. M., Sulaiman, S., Hamdan, M. M., Zainuddin, E. S., Osman, M. R., & Rahman, M. Z. A. (2006). Mould flow and component design analysis of polymeric based composite automotive clutch pedals. Journal of Materials Processing Technology, 171, 358– 365.

James Scoltock (2014). Audi develops carbon fibre-aluminium anti-roll bar: Technology reduces weight by 35%. Retrieved from http://ae-plus.com/technology/audi-develops-carbon-fibre- aluminium-anti-roll-bar

Jang, D. (2014). Mount bushing of stabilizer bar for vehicle. US Patent 8,882,092 B2.

Johnson, C. A., & Jeffrey L. Kincaid. (2008). Stabilizer bar. US Patent 7,448,636 B2.

Juan D. O., Rocio D.O., Laura E., Carmen F., Jose L. M., & Gabriella M. (2014). Analysing the relationship among accident severity, drivers’ behaviour and their socio-economic characteristics in different territorial contexts. Procedia – Social and Behavioral Sciences, 160, 74–83. In XI Congreso de Ingenieria del Transporte 2014, Stander, Spain.9th -11th June 2014.

Jung C.G. (2011). Tapered stabilizer bar having continously changing cross-section and method for manufacturing the same. US Patent 7,984,918 B2.

Jung C.G. (2013). Method for manufacturing a tapered stabilizer bar having a continously changing cross-section. US Patent 8,539,675 B2.

Kemal Caliskan (2003). Automated design analysis of anti-roll bars. Dissertation of Master of Science. Middle East Technical University.

Kleinschmidt, O., Klauke, P., Boeger, T., Rogner, I., Hennig, O., Filthaut, C., & Mayer, S. (2014). Composite material and structural components of a motor vehicle. US Patent 2014/0178633 A1.

Kobayashi, A. (2011). Torsion beam type rear wheel suspension system. US Patent 7,946,600 B2. Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44, 120–127.

Kuroda, S. (2013). Stabilizer device and process for production thereof. US Patent 8,356,825 B2.

Lam, L. (2012). Method and apparatus for producing a stabilizer bar assembly. US Patent 2012/0211958 A1.

Laxminarayan Sidram Kanna, P., S.V. Tare, P., & A.M. Kalje, P. (2014). Feasibility of hallow stability bar. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2014, 76–80.

Lee, S., Jiang, P., & Childs, P. R. N. (2013). Design for functional requirements enabled by a mechanism and machine element taxonomy. In DS 75-7: Proceedings of the 19th International Conference on Engineering Design (ICED13), Design for Harmonies, Vol. 7: Human Behaviour in Design, Seoul, Korea , 19th – 22nd August 2013.(pp. 1–10).

Li, Z., & Li, X. (2013). Vehicular torsion bar suspension device. US Patent 8,387,999 B2.

Liu, S. H., & Li, F. (2011). Fatigue life analysis of the stabilizer anti-roll bar using ANSYS. Advanced
Materials Research, 383-390, 5894-5898.

Luft, R. A., Elisii, J. M., Hoeltgebaum, T., & Vieira, R. D. S. (2012). A design comparison between coil springs and torsion bars. SAE Technical Paper.

Manikandan, M., Raja, K., & Chandrasekar, V. S. (2014). Experimental investigation on torsion bar suspension system using e- glass fibre reinforced composite material. International Journal of Research in Engineering and Technology, 3, 2319–2322.

Mansor, M. R., Sapuan, S. M., Zainudin, E. S., Nuraini, A. A., & Hambali, A. (2014b). Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ–Morphological Chart–Analytic Hierarchy Process method. Materials & Design, 54, 473–482.

Mao, Z., Chen, D., Jiang, S., Zhao, Z., & Yang, G. (2012). Study on fatigue rupture of automotive rear. SAE Technical Paper.
Marzbanrad, J., & Yadollahi, A. (2012). Fatigue life of an anti-roll bar of a passenger vehicle. World Academy of Sciences, Engineering and Technology, 6(2), 204–210.

Mastura, M. T., Sapuan, S. M., Mansor, M. R., & Nuraini, A. A. (2016). Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. The International Journal of Advanced Manufacturing Technology, 1–17.

Milwich, M., Linti, C., Stegmaier, T., Planck, H., Speck, T., Herrmann, A., & Speck, O. (2012). Rod- shaped fibre composite and method and device for the production thereof. US Patent 8,104,392 B2.

Nabi Saheb, D., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18, 351–363.

Nadaf, H. J., & Naniwadekar, A. M. (2015). Analysis of anti-roll bar of passenger car using alternative material. International Journal of Advanced Technology in Engineering and Science, 3, 379– 383.

Palma, E. S., & dos Santos, E. S. (2001). Cumulative fatigue damage in an automobile stabilizer bar : Correlation between laboratory and road experiments. SAE Technical Paper.

Perenda, J., Trajkovski, J., Žerovnik, A., & Prebil, I. (2015). Residual stresses after deep rolling of a torsion bar made from high strength steel. Journal of Materials Processing Technology, 218, 89–98.

Prawoto, Y., Djuansjah, J. R. P., Tawi, K. B., & Fanone, M. M. (2013). Tailoring microstructures: A technical note on an eco-friendly approach to weight reduction through heat treatment. Materials & Design, 50, 635–645.

Puglia, D., Biagiotti, J., & Kenny, J. (2004). A review on natural fibre-based composites – part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers, 1, 23–65.

Pulling, J. C., Kincaid, J., & Jacques, D. L. (2001). Composite stabilizer bar link. US Patent 6,254,114 B1.

Purohit, M., Kadre, S., Shingavi, S., Yogesh, W., & Drishtipran, K. (2011). Analysis of stabilizer bar using simplified approach. Simulation Driven Innovation. Chinchwad Pune.

Renner, O., Krahl, M., Lepper, M., & Hufenbach, W. (2014). Stabilizer bar of fiber reinforced plastic composite and method for its manufacture. US Patent 8,668,212 B2.

Ribeiro, S. Y., & Silveira, M. E. (2013). Application of Finite Element Method in the study of variables that influence the stiffness of the anti-roll bar and the body roll. SAE Technical Papers.

Rill, G. (2012). Road Vehicle Dynamics: Fundamentals and Modeling. CRC Press, Florida. SAE Spring Committee. (1990). Spring design manual. Society of Automotive Engineers, Inc, Pennsylvania, USA.

Sapuan, S. M. (2014). Tropical natural fibre composites: properties, manufacture and applications. (1st ed.). Springer Science Business Media Singapore, Singapore.

Schulz, C., & Braun, T.-H. (2012). Anti-roll bar for a motor vehicle and method for its production. US Patent 2012/0169022 A1.

Scott, M. J., & Antonsson, E. K. (1998). Chapter 8: Preliminary vehicle structure design application. In 10th International Conference on Design Theory and Methodology ASME, 183–204, 13-16 September 1998, Atlanta, Georgia.

Sharma, K., Bora, P. M., & Sharma, P. K. (2012). Hollow cross-section vs . solid cross-section & increasing the diameter of solid cross-section by using Finite Element Analysis of anti-roll bar. International Journal of Advanced Research in Science and Engineering, 1, 1–11.

Shinde P., & Patnaik, M. M. M. (2013). Parametric optimization to reduce stress concentration at corner bends of solid and hollow stabilizer bar. International Journal of Research on Aeronautical and Mechanical Engineering, 1, 1–15.

Soliman, A. M., Moustafa, S., & Shogae, A. O. M. (2008). Parameters affecting vehicle ride comfort using half vehicle model. SAE Technical Paper.

Soon, R. S., Gummadi, L. N. B., & Cao, K. D. (2005). Robustness considerations in the design of a stabilizer bar system. SAE Technical Paper.

Sterly, J., Soronen, J., & Brock Jones. (2008). Stabilizer bar and bushing assembly. US Patent 7,318,593 B2.

Suwa, T., Natsume, Y., & Koichi Kusakawa. (2013). Bush and bracket integrated stabilizer bar. US Patent 8,613,460 B2.

Tang, Y., Liu, W., Li, H., Zhang, B., & Cong, J. (2013). Manufacturability analysis of composite component and its evaluation methodology. Journal of Reinforced Plastics and Composites, 32, 758–764.

Tolouei, R. (2015). Carbon policies targeting road transport: Is there a safety consequence? Transportation Research Procedia, 8, 259–271.

Topac, M. M., Enginar, H. E., & Kuralay, N. S. (2011). Reduction of stress concentration at the corner bends of the anti-roll bar by using parametric optimisation. Mathematical and Computational Applications, 16, 148–158.

Wittek, A.-M., Richter, H.-C., & Lazarz, B. (2010). Stabilizer bars : Part 1. Calculations and construction. Transport Problems, 5, 135–143.

Wittek, A.-M., Richter, H.-C., & Lazarz, B. (2011). Stabilizer bars : Part 2. Calculations-example. Transport Problems, 6, 137–145.

Zhang, L., Liu, H., Xu, Y., Wu, S., & Gu, L. (2012). Study on modeling method of anti-roll bar using one dimensional beam element. SAE Technical Paper.